- (MPI*) Enoncé et preuve du théorème 19 (lemme de décomposition des noyaux).
- (MPI*) Enoncé et preuve du théorème 15 (de Cayley-Hamilton).
- Ex. 65 (Composition sur $\mathbb{K}[u]$ et applications aux polynômes annulateurs)
- Ex 9, 10, 11 (exemples d'études de CVU)

Théorème 9 (Théorème de la double limite)

Soit $A \subset E$, où E est un evn de dimension finie. Soit $(f_n) \in \mathcal{F}(A, \mathbb{K})^{\mathbb{N}}$, $f \in \mathcal{F}(A, \mathbb{K})$ et $a \in \overline{A}$. On suppose que:

- (i) (f_n) converge uniformément vers f sur un voisinage V de a relatif à A;
- (ii) pour tout $n \in \mathbb{N}$, $f_n(x) \xrightarrow{x \to a} \ell_n \in \mathbb{K}$.

Alors, la suite (ℓ_n) converge vers $\ell \in \mathbb{K}$ et $f(x) \xrightarrow[x \to a]{} \ell$. En d'autres termes :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right).$$

Propriété 11 (Convergence uniforme des primitives)

Soit I un intervalle de \mathbb{R} , soit $(f_n) \in \mathcal{C}^0(I, \mathbb{K})^{\mathbb{N}}$.

Si (f_n) converge uniformément vers $f: I \to \mathbb{K}$ sur tout segment de I, alors pour tout $a \in I$, la suite de fonctions (F_n) définie par

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ F_n(x) = \int_a^x f_n(t)dt$$

converge uniformément sur tout segment de I vers la fonction $F:I\to \mathbb{K}$ définie par

$$F(x) = \int_{a}^{x} f(t)dt.$$

Théorème 13 (Dérivation d'une limite de fonctions)

Soit I un intervalle de \mathbb{R} , soit $(f_n) \in \mathcal{F}(I, \mathbb{K})^{\mathbb{N}}$. On suppose que :

- (i) Pour tout $n \in \mathbb{N}$, f_n est de classe C^1 sur I.
- (ii) La suite (f_n) converge simplement vers une fonction $f: I \to \mathbb{K}$.
- (iii) La suite des dérivées (f'_n) converge uniformément sur tout segment de I vers une fonction $g: I \to \mathbb{K}$;

Alors, la suite (f_n) converge uniformément vers f sur tout segment de I, f est de classe C^1 sur I, et f' = g. Autrement dit, on a

$$\lim_{n \to +\infty} f'_n = f' = \left(\lim_{n \to +\infty} f_n\right)'.$$

Exercice 1249 Existe-t-il dans $\mathcal{M}_n(\mathbb{R})$ une matrice de polynôme minimal X^2+1 ?

Exercice 1250 Soit

$$A = \left(\begin{array}{cccccc} a & 0 & \cdots & \cdots & \cdots & 0 & b \\ 0 & \ddots & \ddots & & & \ddots & \ddots & 0 \\ \vdots & \ddots & a & 0 & b & \ddots & \vdots \\ \vdots & & 0 & a+b & 0 & & \vdots \\ \vdots & & \ddots & b & 0 & a & \ddots & \vdots \\ 0 & & \ddots & & & \ddots & \ddots & \vdots \\ b & 0 & \cdots & \cdots & \cdots & 0 & a \end{array}\right) \in \mathcal{M}_{2n+1}(\mathbb{C})$$

Quels sont les $P \in \mathbb{C}[X]$ tels que P(A) = 0?

Exercice 1252 Soit

$$A = \left(\begin{array}{cc} 0_n & I_n \\ -I_n & 0_n \end{array} \right) \in \mathcal{M}_{2n}(\mathbb{K})$$

- 1. Calculer A².
- 2. Selon que $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} dire si la matrice A est, ou non, diagonalisable.

Exercice 1253 Soient E un \mathbb{K} -espace vectoriel de dimension finie, et F, G deux sous-espaces vectoriels supplémentaires non triviaux. On note p la projection sur F parallèlement à G et s la symétrie par rapport à F et parallèlement à G. Enfin on pose pour f endormorphisme de F

$$\phi(f) = p \circ f \circ s$$

ce qui définit un endomorphisme ϕ sur $\mathcal{L}(E)$.

- 1. Montrer que ϕ annule un polynôme « simple ». L'endomorphisme ϕ est-il diagonalisable?
- 2. Déterminer les éléments propres de ϕ . Indication : on pourra considérer les matrices de p et s dans une base adaptée à la décomposition $E = F \oplus G$

Exercice 1235 1. Montrer que la suite de fonctions $f_n(x) = x(1+n^{\alpha}e^{-nx})$ définies $\sup \mathbb{R}^+$ pour $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}^*$ converge simplement vers une fonction f à déterminer.

- 2. Déterminer les valeurs de α pour lesquelles il y a convergence uniforme.
- $3. \ \ Calculer \lim_{n \to \infty} \int_0^1 x (1+\sqrt{n}e^{-nx}) dx.$

Exercice 1237 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable de dérivée seconde bornée. $\forall n \in \mathbb{N}^*$, on pose

$$u_n(t) = n \bigg(f \bigg(t + \frac{1}{n} \bigg) - f(t) \bigg)$$

- $1.\ \ Montrer\ que\ la\ suite\ de\ fonctions\ (u_n)_{n>1}\ \ converge\ uniform\'ement\ sur\ \mathbb{R}\ \ vers\ une\ fonction\ \grave{a}\ pr\'eciser.$
- 2. Que dire de la convergence simple et uniforme de la suite de fonctions $(u_n)_{n>1}$ quand f est seulement \mathcal{C}^1 ?